An adaptive feedforward method in active vibration control for the propulsion shafting system

Author:

Duan Ningyuan12ORCID,Ni Zhen3,Zhang Zhenguo12,Hua Hongxing12

Affiliation:

1. Institute of Vibration, Shock & Noise, State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, P.R.China

2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Shanghai, P.R.China

3. Commercial Aircraft Engine Co., Ltd, Aero Engine Corporation of China (AECC CAE), Shanghai, P.R.China

Abstract

This paper proposes a new adaptive feedforward control method for the rejection of multiple periodic disturbances in the propulsion shafting system. The active vibration control scheme of the propulsion shafting system is established by employing the equivalent-input-disturbance principle which reduces the complexity of the control system in applications. The adaptive control algorithm is designed by taking the scale transformation procedure and the frequency-tracking technique into consideration. The scale transformation normalizes the iso-surface of the optimization function by the frequency response characteristics of the control channel, which immensely improves the convergence rate of the control algorithm for multi-harmonic disturbance. Moreover, the adaptive controller tracks the fluctuating frequencies in a direct method, enhancing the efficiency and robustness of the algorithm for eliminating time-varying disturbances. Finally, numerical simulation and experimental validation are carried out to show that the proposed method has good performance on the application of the active vibration control of the propulsion shafting system.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3