A direct transcription method for solving distributed-order fractional optimal control problems

Author:

Vaziri Doghezlou Roya1,Tabrizidooz Hamid Reza1ORCID,Shamsi Mostafa2ORCID

Affiliation:

1. Department of Applied Mathematics, Faculty of Mathematical Science, University of Kashan, Kashan, Iran

2. Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology (Tehran polytechnic), Tehran, Iran

Abstract

This paper considers the numerical solution of distributed-order Fractional Optimal Control Problems (FOCPs). The common approaches for solving these problems involve approximating the problem with a multi-term FOCP and subsequently discretizing the resulting multi-term problem using either a direct or indirect method. However, this paper bypasses the need for approximation with a multi-term FOCP by introducing innovative approximation formulas for distributed-order fractional derivatives. These approximation formulas are directly derived from the conventional Grünwald–Letnikov, L1, and trapezoidal formulas. Building upon these formulas, we develop the relevant fractional-order distributed-order operational matrices. Utilizing the operational matrix, we easily discretize the distributed-order FOCP to a Non-Linear Programming (NLP), which can be solved by a suitable NLP-solver. Additionally, to enhance the efficiency of solving the resulting NLP, we determine the closed-forms of both the Jacobian of constraints and the gradient of the objective function. The presented method is characterized by its speed, simplicity, and ease of implementation. Moreover, it can be used to solve a wide range of distributed-order FOCPs, such as those involving nonlinear dynamics, free final times, free terminal conditions, and path constraints. By means of ample numerical tests, the accuracy and efficiency of the proposed method are assessed.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Touchard–Ritz Method to Solve Variable-Order Fractional Optimal Control Problems;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3