Identification of the time-varying modal parameters of a spacecraft with flexible appendages using a recursive predictor-based subspace identification algorithm

Author:

Ni Zhiyu1ORCID,Liu Jinguo1,Wu Zhigang2

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China

2. State Key Laboratory of Structural Analysis for Industrial Equipment, School of Aeronautics and Astronautics, Dalian University of Technology, Dalian, China

Abstract

This study focuses on the recursive identification of the time-varying modal parameters of on-orbit spacecraft caused by structural configuration changes. For this purpose, an algorithm called recursive predictor-based subspace identification is applied as an alternative method to improve the computational efficiency and noise robustness, and to implement an online identification of system parameters. In the existing time-domain identification methods, the eigensystem realization algorithm and subspace identification methods are usually applied to obtain the on-orbit spacecraft modal parameters. However, these approaches are designed based on a time-invariant system and singular value decomposition, which require a significant amount of computational time. Thus, these methods are difficult to employ for online identification. According to the adaptive filter theory, the recursive predictor-based subspace identification algorithm can not only avoid the singular value decomposition computation but also provide unbiased estimates in a general noisy framework using the recursive least squares approach. Furthermore, in comparison with the classical projection approximation subspace tracking series recursive algorithm, the recursive predictor-based subspace identification method is more suitable for systems with strong noise disturbances. By establishing the dynamics model of a large rigid-flexible coupling spacecraft, three cases of on-orbit modal parameter variation with time are investigated, and the corresponding system frequencies are identified using the recursive predictor-based subspace identification, projection approximation subspace tracking, and singular value decomposition methods. The results demonstrate that the recursive predictor-based subspace identification algorithm can be used to effectively perform an online parameter identification, and the corresponding computational efficiency and noise robustness are better than those of the singular value decomposition and projection approximation subspace tracking series approaches, respectively. Finally, the applicability of this method is also verified through a numerical simulation.

Funder

Postdoctoral Science Foundation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3