Analysis of the convergent section of a C-D nozzle and its influence on airflow performance using evolutionary strategies

Author:

Bahamon Blanco Jhan Jaider1ORCID

Affiliation:

1. Investigation Group, GIEMA, Industrial University of Santander, Bucaramanga, Colombia

Abstract

The shape of a nozzle wall influences the phenomena associated with the behaviour of the fluid movement within the flow field mathematically described by the Navier—Stokes equations. This article studies different drawing techniques for the aerodynamic tracing of the wall contour searched by Vitoshinsky, Bell, Metha and Sivells. To the system of equations of the design models are added the math formulas that define Sauer’s method for redesigning the length of the converging section modifying simultaneously the contour sketches. The aim is to obtain a better distribution of the physical properties and to avoid excessive pressure in a limited space that could affect the internal structure of the wall. Numerical methods are used to visualize the features of the wave propagation, boundary layer separation and flow separation pattern to survey the appearance of the stream generated within the geometric profile of the wall and the ejected flow. A computational analysis is developed to make a comprehensive assessment of different chosen wall contours, including an optimized wall shape using genetic algorithms through a process to find maximum and minimum values of the cross-sectional area to change the wall layout. The selection carries out based on design parameters with variable area contraction ratio (from low to high) in the convergent section for being simulated in a boundary condition with a low-pressure ratio (NPR). Experimental data from Hunter's research are used for validation of the results for a J2-type aerospace nozzle operating at an NPR of 3.413.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference18 articles.

1. Östlund J. Flow processes in rocket engine nozzles with focus on flow separation and side-loads. Stockholm: Royal Institute of Technology, Department of Mechanics, 2002, pp. 1–130. No.: 09.

2. Numerical prediction of nozzle flow separation: Issue of turbulence modeling

3. Numerical study of the start-up process in an optimized rocket nozzle

4. Experimental Investigation of Separated Nozzle Flows

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3