Numerical investigation of flow properties of the pulsed inductive thruster considering plasma electrical characteristics

Author:

Cheng Yuguo1ORCID,Xia Guangqing1ORCID

Affiliation:

1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China

Abstract

The pulsed inductive thruster accelerates the propellant by the repulsion between inductive coil and current sheet. To accurately investigate the acceleration characteristics in the first half period of pulsed inductive discharge and the energy needed to generate effective impulse, an unsteady magnetohydrodynamics model is developed, in which the coil-plasma boundary condition is improved by plasma electrical model, and the electrical conductivity is calculated using gas kinetic method. The analysis of plasma electrical characteristics shows confining of particles in the beginning and acceleration of the current sheet after ionization process is completed, leaving behind the low-density residual plasma, with negligible contribution to the total impulse. The impulse at high voltage decreases monotonically after peak value is reached, showing effective impulse generation in the first half period, especially before the decoupling distance is reached.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3