Residual life prediction from statistical features and a GARCH modeling approach for aircraft generators

Author:

Du Xiaofei1,Zhou Yuanjun1,Dong Shiliang2

Affiliation:

1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, China

2. Shenyang Aircraft Design and Research Institute, China

Abstract

Condition-based maintenance is currently widely used in the aviation industry with diagnoses obtained from the performance data of the aircraft. Online assessments of the real-time condition and predicted residual life have been of great importance for both mechanics and pilots, especially during flight for the latter. Statistical distribution and feature parameters are believed to be crucial criteria of performance degradation, which facilitate making practical component replacement decisions. Furthermore in terms of observations featuring performance degradation, time-series analysis provides feasible forecasts of residual life from the available working time of aero parameters. The recorded data from constant speed generator drives of aircraft generally demonstrate these characteristics, are non-stationary and have time-varying variance in time-series analysis. The generalized autoregressive conditional heteroskedasticity approach is appropriate to the situation to obtain prediction results. The suitability of the proposed method has been examined through calculating prediction errors with data from an actual life experiment of aviation generator.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference21 articles.

1. Zhiyang J, Li S. Aircraft power supply system, Arlington, VA: National Defense Industry Press, 1988, pp. 39–39.

2. Keller GR. Hydraulic system analysis, Arlington, VA: National Defense Industry Press, 1985, pp. 283–286.

3. Probabilistic Design Approach for Cyclic Fatigue Life Prediction of Microelectronic Interconnects

4. Residual Life Predictions in the Absence of Prior Degradation Knowledge

5. Residual Life Predictions From Vibration-Based Degradation Signals: A Neural Network Approach

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3