Suboptimal trajectory programming for unmanned aerial vehicles with dynamic obstacle avoidance

Author:

Guo Hang1ORCID,Fu Wen-xing1,Fu Bin1,Chen Kang1,Yan Jie1

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi'an, China

Abstract

With regard to the dynamic obstacles current unmanned aerial vehicles encountered in practical applications, an integral suboptimal trajectory programming method was proposed. It tackled with multiple constraints simultaneously while guiding the unmanned aerial vehicle to execute autonomous avoidance maneuver. The kinetics of both unmanned aerial vehicle and dynamic obstacles were established with appropriate hypotheses. Then it was assumed that the unmanned aerial vehicle was faced with terminal constraints and control constraints in the whole duration. Meanwhile, the performance index was established as minimum control efforts. The initial trajectory was generated according to optimized model predictive static programming. Next, the slack variables were introduced to transform the inequality constraints arising from dynamic obstacle avoidance into equality constraints. In addition, sliding mode control theory was utilized to determine these slack variables' dynamics by designing the approaching law of sliding mode. Then the avoidance trajectory for single or multiple dynamic obstacles was developed by this combined method. At last, a further trajectory optimization was conducted by differential dynamic programming. Consequently, the integral problem was solved step by step and numerical simulations demonstrated that the integral method possessed high computational efficiency.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3