Aerothermodynamic analysis and rear wake assessment of shock wave interference over blunt leading edge at Mach 6.5

Author:

Singh Gaurav Shivpratap1ORCID,Sharma Chirag1ORCID,Padhy Siddhant Swaroop1,Dinesan Deepu1,John Bibin2ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

2. Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

Abstract

A detailed numerical study of shock-wave interference on a cylindrical blunt leading edge in hypersonic flow is carried out to reveal the effect of shock-shock interaction on peak heating and blunt body aerodynamics. This study is unique in that it examines the effect of interactions on rear wake formation and aerodynamic forces acting on the blunt body. Six different shock wave interference patterns described by Edney are studied for a freestream Mach number of 6.5. Compressible Reynolds-averaged Navier–Stokes equations are solved using finite volume method to obtain accurate prediction of the flowfield and aerodynamic loads. Hugoniot jump conditions are imposed in the inlet boundary to realize oblique shock of desired strength to interact with the detached shock at specific location. Numerical predictions are in good agreement with reported experimental measurements. The results obtained in this study reveals that the type of shock-shock interaction pattern can significantly alter the characteristics of the rear wake. Comparisons to undisturbed flow conditions reveal that Type II to VI interactions lead to an increase in wake size, whereas Type I interaction shows a marginal reduction. These changes in wake size are attributed to modifications in the forebody boundary layer induced by the shock-shock interactions. In the case of Type I interaction, however, the transmitted wave interacting with the rear wake is found to be responsible for the marginal reduction in wake size. This study also shows that changes to the rear wake structure caused by the change in interaction type can affect aerodynamic loads. Type VI interaction recorded a maximum drag coefficient of 2.96, whereas Type IV interaction yielded a maximum lift coefficient of 0.992. These findings demonstrate the potential for dynamically adjusting the control forces of a flying body by manipulating shock interference.

Funder

Erasmus+ (CBHE)-European Union

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3