Design of a non-cooperative target capture mechanism for capturing satellite launch adapter ring

Author:

Sun Yongjun1ORCID,Wang Qian1,Jiao Rihua1,Liu Rongqiang1,Jin Minghe1

Affiliation:

1. Harbin Institute of Technology, Harbin, China

Abstract

Space debris is growing dramatically, which poses a serious threat to space exploration activities. Especially the large non-cooperative target, such as malfunctioning satellites. This paper proposes a capture mechanism for the launch adapter ring that is usually available on satellites as the capture object, which used for in-orbit capture of malfunctioning satellites. Firstly, introduce the design conditions, the overall design plan, carry out the mechanical mechanism design, sensor system configuration, electrical system design, and explain the capture process. Secondly, analyze the capture tolerance. Thirdly, by establishing the kinematics model of the captured finger, use D-H parameter method for kinematic analysis, and analyze the dynamic in the capturing process. In addition, the control strategy is proposed, and the clamping force model, friction identification model, and servo control strategy are established. Then, the prototype is manufactured, and the clamping force, stiffness, capture loads, and capture tolerance are tested. Finally, the air-floating platform is used to verify the capture test of the launch adapter ring in a microgravity environment. The experimental results show that the developed capture mechanism meets the design conditions and has the ability to capture launch adapter ring of satellites in orbit.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation funded project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3