Estimation of aerodynamic parameters using neural artificial bee colony fusion algorithm for moderate angle of attack using real flight data

Author:

Kumar Prashant1ORCID,Sonkar Sarvesh Kumar2,George Riya Catherine3ORCID,Ghosh Ajoy Kanti1,Philip Deepu4

Affiliation:

1. Department of Aerospace Engineering, IIT Kanpur, Kanpur, India

2. Design Programme, IIT Kanpur, Kanpur, India

3. Department of Civil and Environmental Engineering, Hiroshima University, Higashi Hiroshima, Japan

4. Department of Industrial and Management Engineering, IIT Kanpur, Kanpur, India

Abstract

Aircraft system identification aims to estimate the aerodynamic force and moment coefficients utilizing intelligent modeling and parametric identification methodologies. Classical methods like output, filter, and equation error methods apply extensively as parametric approaches. In contrast, machine learning approaches like Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), etc., are alternatives to model-based methods. This work presents a novel aerodynamic parameters estimation technique that fuses two biologically inspired optimization techniques, (i) the Artificial Bee Colony (ABC) optimization and (ii) ANN for an actual aircraft while incorporating system and measurement uncertainty. The fusion of ABC and ANN imparts the ability to address sensor noise challenges associated with system identification and parameter estimation. Comparison of the proposed method’s results with the benchmark techniques like Least Square, Filter Error, and Neural Gauss Methods using recorded flight data of the ATTAS (DLR German Aerospace Centre) and HANSA-3 (IIT Kanpur) aircrafts established its adequacy and efficacy. Furthermore, the capability of the proposed hybrid method to extract stability and control variables from the stable aircraft kinematics is shown even with insufficient information in its data history.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3