A new strategy for solving store separation problems using OpenFOAM

Author:

Abuhanieh Saleh12ORCID,Akay Hasan U.1,Bicer Barış2

Affiliation:

1. Department of Mechanical Engineering, Atilim University, Turkey

2. Turkish Aerospace, OpenSource CFD Group, Turkey

Abstract

The ability of OpenFOAM to solve the problem of a store separating from an air vehicle (store separation problem) has been evaluated using a dynamic mesh (Overset/Chimera) technique for an industry-class (transonic and generic) benchmark test case. The major limitations of the standard libraries have been determined. To tackle these challenges, a new strategy has been proposed and implemented using only open-source libraries and tools. The strategy combines porting, modifying, and adapting an overset library from the OpenFOAM fork platform (foam-extend) to the standard OpenFOAM platform (ESI). Furthermore, in order to overcome the well-known weakness of the standard OpenFOAM compressible solvers, the newly adapted overset library was integrated with an open-source, density-based, and coupled solver ( HiSA), which uses the OpenFOAM technology. Additionally, a force restrained model was developed to consider the externally applied forces on the store by the store ejectors. The accuracy of the developed strategy has been compared with wind tunnel tests and the solutions of two well-known commercial codes, showing good agreements with them. While the study has focused on simulations with inviscid Euler equations (typical of the test case considered here), the viscosity effect on the solution has also been studied with Navier–Stokes equations and compared with other results in the literature, showing minor differences. To the best of the authors’ knowledge, this is the first work which studies and validates the store separation problem in transonic regime with OpenFOAM.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical investigation of store separation from cavity problems at high speeds;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2023-09-20

2. Machine learning-based surrogate modeling approaches for fixed-wing store separation;Aerospace Science and Technology;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3