Modeling of a reaction control jet interacting with high-speed cross-flow in slip flow regime

Author:

Bhagat Apurva1,Gijare Harshal1,Dongari Nishanth1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Indian Institute of Technology, Hyderabad, India

Abstract

Numerical investigation of a sonic reaction control jet interacting with the high-speed cross-flow has been carried out over a generic missile body. Simulations are performed in the early-hypersonic slip flow regime for air, CO2, and helium jet gases. An open source computational fluid dynamics tool, OpenFOAM is used to model the steady state, three-dimensional compressible Navier–Stokes equations with k-ω shear stress transport turbulence model. The conventional computational fluid dynamics solver is extended with additional features, such as transport of species, nonequilibrium boundary conditions for velocity slip and temperature jump, and a heat load calculation utility based on the sliding friction effect. The extended solver is validated with the direct simulation Monte Carlo results for the case of a sonic argon jet injected into hypersonic nitrogen cross-flow. The extended solver is able to accurately capture all the qualitative flow features like separation shock, bow shock, and barrel shock, and it also improves heat load predictions in the slip flow regime. The main objective of the present work is to study the effect of rarefaction and change in jet gas species on the complex flow topology, heat load distribution, and spread of jet gas on the missile body. Heat load predictions are found to be strongly dependent on the slip velocity of molecules in addition to the temperature gradient near the wall. The strength of a bow shock and a barrel shock is higher for helium jet, compared to air and CO2 jets, which spread more along the missile body, and weaker shocks and reduced heat load is generated. The current work is significant from the perspective of the thermal design of spacecraft surfaces and positioning of the optical sensors.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Re-entry vehicle performance analysis under the control of lateral jet;The Aeronautical Journal;2023-08-31

2. Automation and control of thermal processes in the furnace;IOP Conference Series: Materials Science and Engineering;2020-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3