Three-loop autopilot of spinning missiles

Author:

Li Keyong1,Yang Shuxing1,Zhao Liangyu1

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People’s Republic of China

Abstract

The three-loop autopilot is employed by spinning missiles as well as by many high-performance command or homing guidance missiles currently because it performs well in stabilizing airframe and implementing guidance commands. However, for spinning missiles, the closed-loop system may be dynamically unstable in the form of a divergent coning motion due to the existence of cross-coupling effects. And the stability criteria of the autopilot applicable to the nonspinning missile are no longer valid in the event of the spinning. To address this issue, the structure of a three-loop autopilot of spinning missiles is introduced in this study, for which the sufficient and necessary condition of coning motion stability is analytically derived from the equations in the form of complex summation. The stability criteria are further illustrated by numerical simulation. It is noticed that spinning shrinks the stable region of the design parameters significantly. And the higher the spinning rate, the smaller the stable region becomes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on dynamic stability of rolling missiles employing direct/aerodynamic force compound control;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2024-05-02

2. Feedforward Compensation Enhanced Disturbance Rejection Control for a Spin-Stabilized Guided Projectile Subject to Actuator Rate Limit;Lecture Notes in Mechanical Engineering;2023-12-20

3. Line-of-Sight Stabilization and Reconstruction of Yaw-Pitch Seeker Installed on Rotating Platform;2023 42nd Chinese Control Conference (CCC);2023-07-24

4. Controller design and stability analysis for spinning missiles via tensor product;Aerospace Science and Technology;2022-11

5. Generalized Control Coupling Effect of Spinning Guided Projectiles;IEEE Transactions on Aerospace and Electronic Systems;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3