Affiliation:
1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People’s Republic of China
Abstract
The three-loop autopilot is employed by spinning missiles as well as by many high-performance command or homing guidance missiles currently because it performs well in stabilizing airframe and implementing guidance commands. However, for spinning missiles, the closed-loop system may be dynamically unstable in the form of a divergent coning motion due to the existence of cross-coupling effects. And the stability criteria of the autopilot applicable to the nonspinning missile are no longer valid in the event of the spinning. To address this issue, the structure of a three-loop autopilot of spinning missiles is introduced in this study, for which the sufficient and necessary condition of coning motion stability is analytically derived from the equations in the form of complex summation. The stability criteria are further illustrated by numerical simulation. It is noticed that spinning shrinks the stable region of the design parameters significantly. And the higher the spinning rate, the smaller the stable region becomes.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献