A novel relative navigation algorithm for formation flight

Author:

Yunfeng Zhu1ORCID,Yongrong Sun1,Wei Zhao1,Ling Wu1

Affiliation:

1. Navigation Research Center, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China

Abstract

For higher accuracy and better performance, a novel relative navigation framework named full parallel distributed architecture is presented, using inertial navigation system, global positioning system, and data link. Aiming at multiple aircraft, it is designed to enable each plane to serve as a fusion center. Also this structure enhances the collaboration between aircraft by sharing the relative navigation information. It breaks the limitation of the single fusion center method and can adapt to the reconfiguration of formation. A two-stage filtering estimation algorithm based on Kalman filter is developed to determine relative position, attitude, and velocity between the formation aircraft. Each vehicle contains not only a local filter but also a relative state filter, which helps to improve the accuracy of the relative state error model. The relative navigation system is designed as a closed loop system with parallel processing and real-time performance. Simulation results compared with the traditional centralized filtering method indicate that the approach provides better estimates and restrains the error divergency effectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey of Relative Navigation Methods for Multi-Agent Unmanned Aerial Vehicle Systems;Mekhatronika, Avtomatizatsiya, Upravlenie;2023-07-09

2. Collaborative Geometry Optimization in Resilient Navigation;Resilient Fusion Navigation Techniques: Collaboration in Swarm;2023

3. Collaborative Resilient Navigation Frameworks;Resilient Fusion Navigation Techniques: Collaboration in Swarm;2023

4. A Distributed Formation Joint Network Navigation and Positioning Algorithm;Mathematics;2022-05-10

5. Hierarchical Collaborative Navigation Method for UAV Swarm;Journal of Aerospace Engineering;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3