Numerical simulation of aerodynamic characteristics and heating for grid fin missiles

Author:

Liu Yuanchun1ORCID,Xia Zhi-xun1,Liu Jun1

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China

Abstract

A grid fin is an unconventional missile control surface comprising an outer frame supporting an inner grid of lifting surfaces. Although the topic of grid fin aerodynamics has been studied by many researchers, only a few have considered aerodynamic heating, generating a high-quality structured grid that remains to be a difficult task. An effective method of grid partition and an aerodynamic prediction method to simulate the viscous flow fields of grid-fin configurations at supersonic Mach numbers have been developed. Multi-block and H-O-type grid treatments are developed for complex grid fin configurations. The viscous flow over a tail-controlled missile with grid fins at a Mach number of 2.5 and several angles of attack is calculated using computational fluid dynamics. Additionally, the heat flux distribution of grid fins is investigated, and the effects of shock wave interaction on heat flux are analyzed. The numerical results show good agreement with the measured data, and confirm that this method is an effective way to numerically simulate viscous grid fin flow fields. Furthermore, the aerodynamic heating results show that, because the peak heat flux on the shock wave interaction region is lower than that on the leading edge of the grid fin, it does not affect the thermal protection of the grid fin.

Funder

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Grid Fusion Lifting Surface and Its Flow Control Mechanism at High Angles of Attack;International Journal of Aerospace Engineering;2022-06-17

2. Aerodynamics Analysis of Grid Fins Inner Lattice Structure in Cruise Missile;WSEAS TRANSACTIONS ON FLUID MECHANICS;2021-05-19

3. Numerical analysis of the effect of sweep-back angle on the stability derivatives of the grid fin;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2019-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3