Machine learning–based reduced-order modeling of hydrodynamic forces using pressure mode decomposition

Author:

Ahmed Hassan F1,Farooq Hamayun2,Akhtar Imran1ORCID,Bangash Zafar1

Affiliation:

1. Department of Mechanical Engineering, College of Electrical & Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan

2. Centre for Advance Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan

Abstract

In this article, we introduce a machine learning–based reduced-order modeling (ML-ROM) framework through the integration of proper orthogonal decomposition (POD) and deep neural networks (DNNs), in addition to long short-term memory (LSTM) networks. The DNN is utilized to upscale POD temporal coefficients and their respective spatial modes to account for the dynamics represented by the truncated modes. In the second part of the algorithm, temporal evolution of the POD coefficients is obtained by recursively predicting their future states using an LSTM network. The proposed model (ML-ROM) is tested for flow past a circular cylinder characterized by the Navier–Stokes equations. We perform pressure mode decomposition analysis on the flow data using both POD and ML-ROM to predict hydrodynamic forces and demonstrate the accuracy of the proposed strategy for modeling lift and drag coefficients.

Funder

Higher Education Commission, Pakistan

National Center for Big Data & Cloud Computing 2018

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3