Adaptive gas path diagnostics using strong tracking filter

Author:

Pu Xingxing1,Liu Shangming1,Jiang Hongde1,Yu Daren2

Affiliation:

1. Key Laboratory for Thermal Science and Power Engineer of Ministry of Education, Tsinghua University, Beijing, China

2. School of Energy Science and Engineering, Harbin Institute of technology, Heilongjiang, China

Abstract

Kalman filters are very popular in gas path diagnostics. This algorithm estimates the engine state variables to assess engine health conditions and is accurate in tracking gradual deterioration. However, the performance of the Kalman filter deteriorates when an abrupt fault occurs. There could be a long delay with the Kalman filter in diagnosing the abrupt fault. In addition, the Kalman filter may transfer the abrupt fault on to other components. In this article, an adaptive gas path diagnostic method using strong tracking filter is described that can track gradual deterioration and abrupt fault accurately. The strong tracking filter is an adaptive extended Kalman filter, which introduces suboptimal fading factors into the prediction error covariance of the extended Kalman filter algorithm. The suboptimal fading factors automatically increase when an abrupt fault occurs, therefore, more importance is given to the new measurement in state estimation which allows the filter to quickly track abrupt faults. All of the suboptimal fading factors become one when gradual deterioration occurs, and in this situation, the strong tracking filter becomes the common extended Kalman filter to filter the measurement noise. Therefore, the strong tracking filter can track abrupt faults quickly and accurately, filter measurement noise, and obtain noise-free parameter estimation for gradual deterioration. The strong tracking filter is applied to heavy-duty gas turbine gas path diagnostics for a variety of simulated fault cases to demonstrate the capability of the strong tracking filter in accurately tracking gradual deterioration and abrupt fault.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of a surrogate model for condition monitoring of a digital twin gas turbine;Applied Mathematical Modelling;2024-09

2. A Kind of SLAM Algorithm Based on Strong Tracking Cubature Kalman Filter;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

3. Application of Convolution Neural Network to Gas Turbine Gas Path Fault Diagnosis;Proceedings of the 2023 International Conference on Big Data Mining and Information Processing;2023-11-17

4. Model-Based Leakage Estimation and Remaining Useful Life Prediction of Control Gas Cylinder;International Journal of Aerospace Engineering;2023-05-09

5. Early fault detection of gas turbine hot components under different ambient and operating conditions;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2021-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3