New methodology for flight control system sizing and hinge moment estimation

Author:

Cabaleiro de la Hoz Carlos1ORCID,Fioriti Marco2ORCID

Affiliation:

1. Research Engineer, Mechanical and Aerospace Engineering Department, Politecnico di Torino, Turin, Italy

2. Assistant Professor, Mechanical and Aerospace Engineering Department, Politecnico di Torino, Turin, Italy

Abstract

Flight control surfaces guarantee a safe and precise control of the aircraft. As a result, hinge moments are generated. These moments need to be estimated in order to properly size the aircraft actuators. Control surfaces include the ailerons, rudder, elevator, flaps, slats, and spoilers, and they are moved by electric or hydraulic actuators. Actuator sizing is the key when comparing different flight control system architectures. This fact becomes even more important when developing more-electric aircraft. Hinge moments need to be estimated so that the actuators can be properly sized and their effects on the overall aircraft design are measured. Hinge moments are difficult to estimate on the early stages of the design process due to the large number of required input. Detailed information about the airfoil, wing surfaces, control surfaces, and actuators is needed but yet not known on early design phases. The objective of this paper is to propose a new methodology for flight control system sizing, including mass and power estimation. A surrogate model for the hinge moment estimation is also proposed and used. The main advantage of this new methodology is that all the components and actuators can be properly sized instead of just having overall system results. The whole system can now be sized more in detail during the preliminary design process, which allows to have a more reliable estimation and to perform systems installation analysis. Results show a reliable system mass estimation similar to the results obtained with other known methods and also providing the weight for each component individually.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3