Effects of periodic wakes on the endwall secondary flow in high-lift low-pressure turbine cascades at low Reynolds numbers

Author:

Qu Xiao12,Zhang Yanfeng12,Lu Xingen12,Han Ge12,Li Ziliang12,Zhu Junqiang12

Affiliation:

1. Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Science, Beijing, China

Abstract

Periodic wakes affect not only the surface boundary layer characteristics of low-pressure turbine blades and profile losses but also the vortex structures of the secondary flow and the corresponding losses. Thus, understanding the physical mechanisms of unsteady interactions and the potential to eliminate secondary losses is becoming increasingly important for improving the performance of high-lift low-pressure turbines. However, few studies have focused on the unsteady interaction mechanism between periodic wakes and endwall secondary flow in low-pressure turbines. This paper verified the accuracy of computational fluid dynamics by comparing experimental results and those of the numerical predictions by taking a high-lift low-pressure turbine cascade as the research object. Discussion was focused on the interaction mechanisms between the upstream wakes and secondary flow within the high-lift low-pressure turbine. The results indicated that upstream wakes have both positive and negative effects on the endwall flow, where the periodic wakes can decrease significantly the size of the separation bubble, prevent the formation of secondary vorticity structures at relatively high Reynolds numbers (100,000 and 150,000), and reduce the cross-passage pressure gradient of cascade. In addition, periodic wakes can improve the cascade incidence characteristic in terms of reducing the overturning and underturning of the secondary flow at downstream of the cascade all of which are beneficial for decreasing the endwall secondary losses, whereas more endwall boundary layer is involved in the main flow passage due to the wake transport, resulting in increased strength of the secondary flow at low Reynolds number of 25,000 and 50,000. Compared with the results without wakes, the total pressure loss for unsteady condition at the cascade exit decreases by 2.7% and 6.1% at high Reynolds number of 100,000 and 150,000, respectively. However, the secondary loss at unsteady flow conditions increases at low Reynolds number of 25,000 and 50,000.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3