Mechanism of characteristic change of panel flutter caused by oblique shock impingement

Author:

Meng Xianzong1ORCID,Ye Kun2ORCID,Ye Zhengyin2ORCID

Affiliation:

1. School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, China

2. School of Aeronautics, Northwestern Polytechnical University, Xi’an, China

Abstract

Compared to the shock-free condition, the weak shock impingement stabilizes the flexible panel, while the strong shock impingement leads to the early onset of panel flutter with a significant increase in flutter amplitude and frequency. However, the reason for this change by shock impingement remains unclear. The current research examines the mechanism of this change by an in-house code where the von Kármán’s large deflection plate theory is coupled with two-dimensional Euler equations. Compared to the shock-free condition, the oblique shock impingement leads to the change of local dynamic pressure on the panel as well as the static pressure differential across the panel. The analysis on the influence of these changes indicates that, on the one hand, the average dynamic pressure on the panel becomes larger than the shock-free condition, accelerating the onset of panel flutter. On the other hand, the change of the static pressure differential across the panel alters the coupling characteristic between different natural frequencies (modes) of the panel structure. The dynamic response of panel flutter under shock impingements is dominated by the coupling between the second and third modes instead of the first two modes for panel flutter under the shock-free condition. The combined effect of these two changes leads to the change of flutter characteristics of the panel under shock impingement. These findings provide valuable insights into the mechanism of shock-induced panel flutter.

Funder

National Natural Science Foundation of China

The Zhengzhou University QiuShi Research Start-up Fund

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3