Dual combustor ramjet engine dynamics modeling and simulation for design analysis

Author:

Wadwankar N1,Kandasamy G1,Ananthkrishnan N1,Renganathan VS1,Park Ik-Soo2,Hwang Ki-Young2

Affiliation:

1. Radiant Coral Digital Technologies Pvt. Ltd, Bangalore, India

2. Agency for Defense Development, Daejeon, South Korea

Abstract

An integrated low-order, medium-fidelity model for a dual combustor ramjet engine configuration is derived for use in mission analysis and controller design. Each of the individual components – intake, isolator, ram diffuser and combustor, scram combustor and nozzle – are modeled using either empirical data or analytical relations, or in case of the two combustors by using a quasi-one-dimensional code. The components are appropriately linked to capture the key physical phenomena inherent in the dual combustor ramjet engine operation and the ongoing dynamic processes. Feedback loops due to the upstream influence of the pressure and time lags due to acoustic and flow-related delays are modeled. Sample results are generated for a dual combustor ramjet engine configuration with Jet-A fuel at a design condition of Mach 7 at 27.5 km altitude, and stability and dynamic behavior, steady-state performance, and response to fuel throttling input are assessed. Its low order and the ability to be easily reconfigured for a new geometry/parametric input make the model useful for mission analysis studies with a quick turn-around time.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3