Email Campaigns That Suit the Candidate: Leveraging Automated Text Analysis to Increase Political Donations

Author:

Mummalaneni SimhaORCID,Wang Rebecca Jen-Hui,Isaac Mathew S.ORCID

Abstract

This research employs automated text analysis to explore how textual characteristics in campaign emails affect monetary donations received by political candidates. The authors outline a new methodological framework that combines a machine learning approach for natural language processing with fixed effect regressions, thereby enabling researchers to study and interpret the impact of textual characteristics on donations while also accounting for individual differences across candidates and their email recipients. Using this framework, the authors analyze 764 emails from 19 candidates in the 2020 U.S. Democratic presidential primary election and evaluate how certain textual characteristics (e.g., empathy, vulnerability) in campaign emails affect donation outcomes. Identifying these effects would enable candidates to improve their email text and increase their donations by 9% on average. This research provides a practical and flexible roadmap for automated text analysis in situations where political campaigns do not have clear a priori hypotheses about which textual characteristics will be effective for them.

Publisher

SAGE Publications

Reference39 articles.

1. Hidden Donors: The Censoring Problem in U.S. Federal Campaign Finance Data

2. Donation Motivations

3. Bycoffe Aaron (2020), “Tracking Every Presidential Candidate’s TV Ad Buys,” FiveThirtyEight (April 8), https://projects.fivethirtyeight.com/2020-campaign-ads/.

4. The Scree Test For The Number Of Factors

5. Doubek James (2015), “Political Campaigns Go Social, But Email Is Still King,” NPR (July 28), https://www.npr.org/sections/itsallpolitics/2015/07/28/426022093/as-political-campaigns-go-digital-and-social-email-is-still-king.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3