Molecular Mechanisms of Dental Enamel Formation

Author:

Simmer J.P.1,Fincham A.G.2

Affiliation:

1. University of Texas School of Dentistry, Health Science Center at San Antonio, Department of Pediatric Dentistry, 7703 Floyd Curl Drive, Son Antonio, Texas 78284-7888

2. Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, 2250 Alcazar Street, CSA 1st Floor, Los Angeles, California 90033

Abstract

Tooth enamel is a unique mineralized tissue in that it is acellular, is more highly mineralized, and is comprised of individual crystallites that are larger and more oriented than other mineralized tissues. Dental enamel forms by matrix- mediated biomineralization. Enamel crystallites precipitate from a supersaturated solution within a well-delineated biological compartment. Mature enamel crystallites are comprised of non-stoichiometric carbonated calcium hydroxyapatite. The earliest crystallites appear suddenly at the dentino-enamel junction (DEJ) as rapidly growing thin ribbons. The shape and growth patterns of these crystallites can be interpreted as evidence for a precursor phase of octacalcium phosphate (OCP). An OCP crystal displays on its (100) face a surface that may act as a template for hydroxyapatite (OHAp) precipitation. Octacalcium phosphate is less stable than hydroxyapatite and can hydrolyze to OHAp. During this process, one unit cell of octacalcium phosphate is converted into two unit cells of hydroxyapatite. During the precipitation of the mineral phase, the degree of saturation of the enamel fluid is regulated. Proteins in the enamel matrix may buffer calcium and hydrogen ion concentrations as a strategy to preclude the precipitation of competing calcium phosphate solid phases. Tuftelin is an acidic enamel protein that concentrates at the DEJ and may participate in the nucleation of enamel crystals. Other enamel proteins may regulate crystal habit by binding to specific faces of the mineral and inhibiting growth. Structural analyses of recombinant amelogenin are consistent with a functional role in establishing and maintaining the spacing between enamel crystallites.

Publisher

SAGE Publications

Subject

General Dentistry,Otorhinolaryngology

Cited by 398 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3