Machine Learning-Based Prediction of Stroke in Emergency Departments

Author:

Abedi Vida12ORCID,Misra Debdipto3,Chaudhary Durgesh45ORCID,Avula Venkatesh2,Schirmer Clemens M.4,Li Jiang2,Zand Ramin64ORCID

Affiliation:

1. Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA

2. Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA

3. Division of Informatics, Geisinger Health System, Danville, PA, USA

4. Geisinger Neuroscience Institute, Geisinger Health System, Danville, PA, USA

5. Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA

6. Department of Neurology, Pennsylvania State University, 30 Hope Drive, PO Box 859, Hershey, PA 17033-0859, USA

Abstract

Background: Stroke misdiagnosis, associated with poor outcomes, is estimated to occur in 9% of all stroke patients. Objectives: We hypothesized that machine learning (ML) could assist in the diagnosis of ischemic stroke in emergency departments (EDs). Design: The study was conducted and reported according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis guidelines. We performed model development and prospective temporal validation, using data from pre- and post-COVID periods; we also performed a case study on a small cohort of previously misdiagnosed stroke patients. Methods: We used structured and unstructured electronic health records (EHRs) of 56,452 patient encounters from 13 hospitals in Pennsylvania, from September 2003 to January 2021. ML pipelines, including natural language processing, were created using pre-event clinical data and provider notes in the EDs. Results: Using pre-event information, our model’s area under the receiver operating characteristics curve (AUROC) ranged from 0.88 to 0.92 with a similar range accuracy (0.87–0.90). Using provider notes, we identified five models that reached a balanced performance in terms of AUROC, sensitivity, and specificity. Model AUROC ranged from 0.93 to 0.99. Model sensitivity and specificity reached 0.90 and 0.99, respectively. Four of the top five performing models were based on the post-COVID provider notes; however, no performance difference between models tested on pre- and post-COVID was observed. Conclusion: This study leveraged pre-event and at-encounter level EHR for stroke prediction. The results indicate that available clinical information can be used for building EHR-based stroke prediction models and ED stroke alert systems.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3