Elastic properties identification of a bio-based material in tertiary packaging: Tools and methods development

Author:

Saihi Mohamed Hichem1ORCID,Sassi Sonia1ORCID,Collombet Francis1ORCID,Grunevald Yves-Henri2,Davila Yves1,Zitoune Redouane1ORCID

Affiliation:

1. Institut Clément Ader (ICA), Université de Toulouse, Toulouse, France

2. CES Works, La Penne Sur Huveaune, France

Abstract

This study focuses on the use of bio-based materials for structural purposes in the packaging field, which requires the identification of their mechanical properties at a representative scale. The mechanical properties of bio-based materials are more variable than those of traditional composite materials. In a standard characterization approach using elemental coupons under uniaxial loading, the variability depends on the chosen representative elementary volume (REV), free edges, boundary conditions, etc. for elastic properties that are not identified for representative working conditions; this could lead to the ineligibility of these bio-based materials as structural materials. This paper contributes to the debate on how to study the response of bio-based materials within a structure, here a packaging structure as a logistic unit (LU) subjected to a compressive load simulating storage and stacking conditions. In the set of tools and methods for the design of packaging materials made of bio-based materials, an elastic nonlinear geometric finite element model (FEM) and an experimental approach are presented. The FEM allows the numerical identification of zones of interest within the LU. Inevitably, the FEM classically requires input data which are elastic properties of the equivalent homogeneous material. The design of the FEM is based on a calculation-test approach using an existing reference LU and it can be summarized in two main steps. The first step concerns the development of a FEM able to restore the experimental conditions of vertical compression imposed by transport standards for packaging. The second step is based on updating the input properties of the FEM by reverse identification, to achieve the representative working condition properties, using experimental results obtained on the existing reference LU. For the reverse identification a multi-scale investigation is mandatory. For this purpose, the linear elastic part of the load/vertical displacement curves (at the LU stiffness scale) and the displacement and strain fields measured (at the local LU scale) by 3D digital image correlation (3D DIC) are evaluated. Then, FEM property updating is carried out by reducing the deviation of displacement/strain fields between FEM and experimentally measured results (3D DIC). Finally, we explain how FEM and 3D DIC help in decision-making by allowing the recognition of zones of interest in a phase of design of new LUs with the concept of Multi-Instrumented Technological Evaluator (MITE).

Funder

Institut Clément Ader, Université de Toulouse

Ilipack Platform

IUT Paul Sabatier, Université de Toulouse

Occitanie region

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3