Mechanical response of shape memory alloy–based hybrid composite subjected to low-velocity impacts

Author:

Pinto Fulvio1,Meo Michele1

Affiliation:

1. Material Research Centre, University of Bath, UK

Abstract

One of the most common problems with composite materials is their low resistance to impacts with foreign objects because of their tendency to dissipate impact energy through internal delamination, weakening a large area of the structure. One of the possible solutions to increase impact resistance is to use of shape memory alloy wires in order to exploit their unique superelastic behaviour and the hysteresis that characterises their stress–strain curves. In this study, composite laminates were hybridised by embedding a network of shape memory alloy within the laminate structure and were subjected to low-velocity impact in order to analyse their response in comparison with a traditional composite. Ultrasonic C-scan analysis was undertaken on the samples after the impact in order to estimate the extension of the internal delamination. Results show that the shape memory alloy wires embedded in the laminate are able to absorb a large amount of energy, reducing the extension of the internal delamination.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3