Affiliation:
1. Department of Aeronautics and Astronautics Stanford University Stanford, CA 94305
Abstract
The changes in shapes of fiber-reinforced composite beams, plates and shells affected by embedded piezoelectric actuators were investigated. An analytical method was developed which can be used to calculate the changes in shapes for specified applied voltages to the actuators. The method is formulated on the basis of mathematical models using two-dimensional, linear, shallow shell theory including transverse shear effects which are important in the case of sandwich construction. Solutions to the governing equations were obtained via the Ritz method. A computationally efficient computer code with a user-friendly interface was written which is suitable for performing the numerical calculations. The code, designated as SHAPE1, provides the change in shape for specified applied voltages. To validate the method and the computer code, results generated by the code were compared to existing analytical and experimental results and to test data obtained during the course of the present investigation. The predictions provided by the SHAPE1 code were in excellent agreement with the results of the other analyses and data.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
128 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献