Effects of CNTs addition on the microstructure and microhardness of stainless steel alloy/carbon-manganese non-alloyed steel welding

Author:

dos Reis Marcos AL1ORCID,de Sousa Mário ES1ORCID,Ferreira André A2,Carneiro Íris SM2,de Melo Clarissa H2,Júnior Marcionilo NS2,Vieira Manuel F23ORCID

Affiliation:

1. Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará, Brazil

2. CEMMPRE, Department of Metallurgical and Materials Engineering, University of Porto, Portugal

3. Faculty of Engineering, University of Porto (FEUP), Portugal

Abstract

In recent years some progress has been made about the addition of Carbon Nanotubes (CNTs) in the stainless steel metal matrix by pulsed Gas Tungsten Arc Welding (P-GTAW). Despite that, there is lack of information regarding to microstructural modifications induced by CNTs in dissimilar welding. In this sense, we present the welding of nanocomposite based on Nickel/Carbon Nanotubes-stainless steel 316L alloy (Ni/CNTs-SS 316L), as the welding metal, on carbon-manganese (C-Mn) non-alloyed structural steel, as the base metal. The microstructure of manufactured specimens with/without nanocomposite was characterized by: optical microscopy; Raman spectroscopy; scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and electron backscattering diffraction (EBSD). Moreover, Vickers tests were performed from the welding metal (WM) to the base metal (BM) before/after temper treatment in order to investigate the microhardness changes. The results show that dilution rate and grain size for specimen with nanocomposite was higher than without nanocomposite; the CNTs affected the misorientation angle and texture of the WM; the topside microhardness from WM with Ni-CNTs was on average 30.40% higher than BM; and, in transverse cross-section microhardness was 31% higher than control sample on average at fusion line zone. These results indicate that addition of CNTs in the metallic matrix by dissimilar welding is a fertile ground for new studies applicable to manufacturing industry.

Funder

PROPESP/UFPA and CAPES

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3