Electrical characterization of deformation behavior of carbon-based conductive filled nanocomposites under constant amplitude fatigue loading

Author:

Kasım Hasan1ORCID,Yazici Murat2

Affiliation:

1. R&D Center, Pega Automotive Susp. Ind. Co. Inc., Turkey

2. Department of Automotive Engineering, Faculty of Engineering, Bursa Uludag University, Turkey

Abstract

Elastomer-based nanocomposites(EcNs) were prepared with a novel mixing method to determine the deformation properties under constant amplitude dynamic operating conditions. The fillers of EcNs consists of functionalized(M-FCNTs) and nonfunctionalized carbon-nanotubes(M-NCNTs), graphite(GF) and carbon black(CB). In this study, six different mixtures were prepared using M-FCNT, and M-NCNT fillers in 1, 2, 3 phr ratios, except for a CB-filled reference mixture(C00). Graphite, which has exfoliation and excellent lubricating properties1, was added to six mixtures at the rate of 1 phr to prevent agglomeration of M-CNTs in the mixtures. SEM images show that M-CNTs are homogeneously distributed, interacting strongly with GF, and M-FCNTs have a better interface interaction than M-NCNTs. During crosslinking of M-NCNT filled EcNs, due to the resistance in the direction of the polymer chain's movement, the difference between minimum torque and maximum torque increased by approximately 10% compared to M-FCNTs. The lost energy (ΔW) between the loading and unloading curves of M-NCNT filled EcNs increased compared to the M-FCNT filled mixtures and C00. The resistance properties depending on the samples' strain value showed a more stable and repetitive behavior in M-FCNT filled EcNs with a ratio of 1 and 2 phr, called F-C01 and F-C02, respectively. The semiconductor F-C01 sample showed the most stable behavior due to preserving the conductive filler network's structural order during the fatigue test, although the average resistance change was highest with 1.51E + 07 Ω. We discuss ways to use conductive elastomer composites as an effective deformation detection sensor in dynamic applications based on the results.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3