Pocket milling of carbon fiber-reinforced plastics using 532-nm nanosecond pulsed laser: An experimental investigation

Author:

Hu Jun1,Xu Hebing1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

Abstract

Non-traditional machining of carbon fiber-reinforced plastics, such as laser machining, has great advantages over mechanical machining in the aspect of machinability and flexibility. In this article, a laser milling method using diode pumped and frequency doubled Nd:YVO4 nanosecond pulsed laser system is presented. The effects of processing parameters including laser power, scanning speed, and hatch distance were analyzed. It was found that machining quality and efficiency are seriously influenced by laser power and pulses overlapping rate. The features of micro-pit and chopped fibers on the machined surface were observed with metallographic microscope, and ablation mechanism involved was studied to explain the phenomenon. Depth-controlled milling strategy was realized in the laser focusing environment. Finally, challenges and suggestions are presented for wide application of the method.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3