Impact behavior of long glass fibre reinforced aluminum metal matrix composite prepared by friction stir processing technique for automotive

Author:

Olhan Sandeep1ORCID,Khatkar Vikas1ORCID,Behera B. K.1

Affiliation:

1. Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, India

Abstract

This work dealt with the fabrication of novel long glass fibre reinforced aluminum metal matrix composite (LGFRAMMC) material for automotive applications. The composite specimens were prepared by incorporating long glass fibre with different fibre volume percentage (50, 66, 80, and 100 vol.%) as reinforcement in aluminium alloy (Al6061) using the friction stir processing (FSP) method. The mechanical behaviour of the composite materials was investigated for their primary loading conditions such as tensile and Izod impact stress. Microstructural characterization and fractured mechanism of the fabricated composites were carried out by scanning electron microscope (SEM) analysis. The tensile strength and elongation of the developed composite specimens decreased with the incorporation of long glass fibre, whereas the Izod impact strength of the developed composite specimens was significantly improved as compared to the conventional base metal (Al6061) body panels used in automobiles. The low tensile strength of LGFRAMMC specimens compared to base metal was because of tunnel defect, brittle fracture and extreme plastic deformation (EPD) as characterized by fibre pull-out, pits, and micro cracks. The synergetic effects of EPD and reinforcing by long glass fibres lead to a remarkable improvement in the impact strength.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3