Experimental and numerical study of the spring-in of angled brackets manufactured using different resins and fiber textiles

Author:

Bernath Alexander1ORCID,Groh Fabian23,Exner Wibke2,Hühne Christian2,Henning Frank14

Affiliation:

1. Karlsruhe Institute of Technology (KIT), Institute of Vehicle System Technology, Chair of Lightweight Technology, Germany

2. German Aerospace Center, Institute of Composite Structures and Adaptive Systems, Germany

3. AUDI AG, Germany

4. Fraunhofer Institute of Chemical Technology (ICT), Germany

Abstract

Process-induced distortion of composite structures often leads to a violation of tolerances, making the assembly of components difficult and expensive. It therefore can inhibit a cost-effective mass production of high-performance composite structures. Process-induced distortion is often introduced by curved regions of a part due to spring-in. Main drivers are chemical shrinkage of the resin and thermal expansion of both fiber and resin during cooling after demolding. Both contribute to residual strains and consequently lead to distortion of the manufactured part. The spring-in phenomenon has been already addressed in many studies. However, variations in manufacturing and specimen properties inhibit a detailed comparison of the results. Hence, it is difficult to isolate major influencing parameters. Here we show spring-in results of specimens that were manufactured using the very same experimental setup and laminate configuration but different resin and fiber types. It is therefore possible to identify the interaction of the curing temperature and the maximum achievable glass transition temperature of the individual resins as a major influencing factor. Furthermore, it is shown that the properties of the investigated resins do not differ largely in terms of thermal expansion and chemical shrinkage. Moreover, the latter was measured using two different techniques to enable a comparison. Numerical spring-in prediction revealed good accuracy throughout the investigated specimen configurations. Limitations found are the influence of the sewing of fiber textiles and the sensitivity of the model to gradual changes of the layup. Moreover, different homogenization techniques are compared with regard to spring-in prediction accuracy.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3