Study of the pull-out test of multifilament yarns embedded in cementitious matrix

Author:

Slama Anne-Claire1ORCID,Gallias Jean-Louis1,Fiorio Bruno1ORCID

Affiliation:

1. L2MGC, CY Cergy Paris Université, France

Abstract

In order to understand the impregnation mechanism of a yarn by a cementitious matrix and its influence on the mechanical properties of a yarn/cement composite, pull-out tests have been performed on samples of yarn/cement. Two embedded lengths for the yarn and different rheological and mechanical properties for the matrix were tested. Two pull-out modes were distinguished according to the compressive strength of matrices. For matrices with a compressive strength between 60 and 70 MPa the pull-out mode is characterized by a behaviour close to the tensile behaviour of the yarn, with maximum load values reaching approximately 60% of the tensile maximum load because of filaments damages. For matrices with compressive strength inferior to 60 MPa, the pull-out mode exhibits a residual phase linked to a slippage and an extraction of a variable number of filaments, with lower maximum load values than the first pull-out mode. After pull-out test, for some samples with filaments extraction, an innovative method based on a double impregnation with resin enables to visualize the yarn/matrix interface and identify the level of impregnation of the filaments by using confocal microscopy. It is concluded that this level of impregnation has a direct influence on the mechanical behaviour of the embedded yarn, except for the slippage and extraction phase, but the rheological properties of the matrix has no significant influence on this impregnation.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3