An experimental study on the bending response of multi-layered fibre-metal-laminates

Author:

Kuhtz M1ORCID,Buschner N2,Henseler T3,Hornig A1,Klaerner M2,Ullmann M3,Jäger H1,Kroll L2,Kawalla R3

Affiliation:

1. Institute of Lightweight Engineering and Polymer Technology, Technische Universität Dresden, Germany

2. Institute of Lightweight Structures, Chemnitz University of Technology, Germany

3. Institute of Metal Forming, Technische Universität Bergakademie Freiberg, Germany

Abstract

The combination of thin light metal sheets with fibre-reinforced thermoplastic layers in multi-layered fibre-metal-laminates advantageously combines the properties of both material classes. In this way, components can be developed which have both significantly increased specific properties (strength and stiffness with respect to density) and high energy absorption capacity compared with conventional design with mono materials. However, the structural behaviour of crash structures is decisively determined by material behaviour of the thermoplastic and metal constituents as well as the interface properties between both constituents and the corresponding delamination behaviour. To evaluate the structural response of multi-layered fibre-metal-laminates under highly dynamic loading conditions, Charpy tests were performed, where the test parameters, light metal material configuration, support length and laminate thickness, were varied. Moreover, the metal sheet surfaces were pre-treated by embossing to achieve different surface topologies. The influence of the different test parameters on the specific energy absorption capacity was characterised by the analysis of force–displacement curves.

Funder

European Regional Development Fund

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3