Experiences with Modeling Friction in Composite Bolted Joints

Author:

McCarthy C. T.1,McCarthy M. A.2,Stanley W. F.1,Lawlor V. P.1

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, Composites Research Centre, Materials and Surface Science Institute, University of Limerick, Limerick, Republic of Ireland

2. Department of Mechanical and Aeronautical Engineering, Composites Research Centre, Materials and Surface Science Institute, University of Limerick, Limerick, Republic of Ireland,

Abstract

Finite element analyses of composite bolted joints are common in the literature. However, the important issue of friction is often given superficial treatment. Friction introduces added difficulties to an already complex contact problem in terms of numerical convergence, and there can be a temptation to accept any method that will give a convergent solution. However, friction can significantly alter the stress distribution in the laminate at the bolt-hole interface, and carries a major proportion of the load in torqued joints; hence is important to model correctly. In the present study, experiences with modeling friction in composite bolted joints using commercial code MSC.Marc are presented. Unlike previous studies, both physical friction parameters and nonphysical convergence parameters within the available models are examined in detail and the findings should be helpful to other researchers analyzing similar problems. Two available models within the code are examined for their ability to model load transfer by friction in torqued joints, and the stress distribution at the bolt-hole interface in a pinned joint. The torqued joints include a large clearance so that both static and kinetic friction effects occur as the joint begins to slide and clearance is taken up. Results from the torqued joint models are compared with the experimental results. The stress distribution at the bolt-hole interface of the pinned joint is compared with a solution from an analytical method. It has been found that only one of the two models available in the code is capable of producing satisfactory results, and even with that model significant modification to the default friction parameters was required. It has also been found that using friction coefficients measured under ideal (clean) conditions in the model of the torqued joints did not give very good agreement with the joint experiments, which involved routine handling of the specimens. Finally, the developed friction model is used in a case study of a multibolt joint with variable degrees of bolt torque and bolt-hole clearances, and it is shown that such models can provide useful information for the design of composite bolted joints.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3