The effects of mechanical milling on the structural, mechanical, and electromagnetic properties of Cu-8 wt% NdFeB composite alloys

Author:

López Marta1,Jiménez José2,Mangalaraja RV1

Affiliation:

1. Department of Materials Engineering, University of Concepción, Chile

2. Department of Physical Metallurgy, CENIM-CSIC, Spain

Abstract

In an attempt to develop new materials that combine structural (mechanical) and functional (electrical and magnetic) properties, a copper composite alloy reinforced through the dispersion of fine Nd2Fe14B intermetallic particles has been synthesized by the powder metallurgy route. Composite master alloy was prepared by blending copper and 8 wt% of intermetallic NdFeB in a planetary ball mill working at 250 r/min under argon atmosphere for 10 h. Resulting composite powders were encapsulated in Cu cans and then consolidated by extrusion at 1023 K. Microstructure features of blended powders and consolidated materials were characterized by means of X-ray diffraction, scanning electron microscopy, and electron probe micro analysis. Fitting of the X-ray diffraction patterns with the Rietveld method revealed that during processing, some NdFeB particles reacted with copper and oxygen to form Nd2CuO4. The lower Nb content on the Nd2Fe14B intermetallic phase due to this oxidation causes the dispersion of Fe and Fe2B particles, which also have soft magnetic properties but a higher moment compared to Nd2Fe14B. The extruded alloys showed enhanced mechanical properties (with yield strength ≥ 600 MPa, ultimate tensile strength ≥700 MPa, and 5% elongation to failure) with satisfactory electrical conductivity (46% IACS) and high values of the coercive field (≥30,000 A/m).

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3