Fracture mechanics of hybrid composites with ductile matrix and brittle fibers: Influence of temperature and constraint effect

Author:

Vieille B1ORCID,Gonzalez J-D1,Bouvet C2

Affiliation:

1. INSA Rouen, Groupe de Physique des Matériaux, France

2. Institut Clément Ader, Université de Toulouse, France

Abstract

The fracture behavior of hybrid carbon and glass fiber woven-ply reinforced polyether ether ketone thermoplastic quasi-isotropic laminates is investigated. Single-edge-notch bending and single-edge-notch tensile tests were conducted at room temperature and at a temperature higher than the glass transition temperature ( Tg) to study the influence of both the constraint effect and the temperature on the strain energy release rate in laminates with ductile polyether ether ketone matrix and brittle fibers. As failure is primarily driven by fibers breakage in tension (single-edge-notch tensile test) and in tension/compression (single-edge-notch bending), it turns out that a temperature increase has very little influence on the mode I critical translaminar fracture toughness KIc though the ductility of polyether ether ketone matrix is exacerbated at T >  Tg. It also appears that the constraint effect has very little influence on KIc as single-edge-notch tensile test and single-edge-notch bending specimens have virtually the same mean value (about 45MPa. [Formula: see text]). Single-edge-notch bending specimens being characterized by a gradual failure, the G-R curves were derived from the computation of the compliance loss and the corresponding gradual crack growth in agreement with the ASTM standard E1820. From the evolution of the G-R curves at high temperature, the highly ductile behavior of the polyether ether ketone matrix at T >  Tg provides a good intrinsic toughness to the material, and the bridging of translaminar crack by the glass fibers at the outer surfaces of laminates contribute to a moderate increase in its extrinsic toughness.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3