Affiliation:
1. Technical Data Analysis, Inc. (TDA), USA
Abstract
This paper presents a micromechanical analysis of the influence of fiber–matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite. The method combines three-dimensional (3D) computational micromechanics and augmented finite element method to provide high-fidelity results of damage initiation and propagation. Random arrangement of fibers and normal distribution of interface toughness and strength are considered in representative volume elements to capture the stochastic behavior of the composite under loading. Sensitivity analysis with respect to the interface properties distribution, and shape and size of fibers on the representative volume element’s strength are performed. The effect of fiber volume fractions on the strength and elastic modulus of the composite is investigated. Failure path in different representative volume elements are compared. The results show that the response of a representative volume element with identical interface properties overestimates the composite’s transverse strength. It is also shown that the damage initiation and propagation locations are affected by the distributions of fracture properties, and the shape and size of fibers within the representative volume element.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献