Natural fiber composite: Challenges simulating inelastic response in strain-controlled tensile tests

Author:

Pupure Liva1,Varna Janis1,Joffe Roberts1

Affiliation:

1. Composite Centre Sweden, Luleå University of Technology, Luleå, Sweden

Abstract

Problems occurring, when nonlinear time-dependent material model with parameters identified in creep tests is applied to simulate high-strain response in strain-controlled tests, are described and analyzed. Reasons for discrepancies with experimental loading curves are revealed. Presented numerical/experimental examples deal with three bio-based composites showing highly nonlinear behavior due to damage, nonlinear viscoelasticity and viscoplasticity. Schapery's approach for viscoelasticity and Zapas' model for viscoplasticity are used. The model is generalized to include microdamage effect. It is shown that the main problem in simulations at high stresses is the reliability of data from creep test for model identification in this region because creep rupture limits the available data region and extrapolation to higher stresses is rather uncertain. Alternative solution is to employ relaxation tests at high strains to obtain the missing information. However, it would work only in absence of viscoplastic strains: viscoelastic relaxation functions cannot be determined by maintaining constant total strain if viscoplastic-strain is developing. Based on sensitivity analysis of composite response to variations of the elastic modulus, damage, viscoelastic and viscoplastic parameters, suggestions are made for improving (further “tuning”) the model in high stress region by using tensile stress–strain curves in quasi-static loading.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3