Laser process parameter optimization of dimple created on oriented carbon fiber reinforced epoxy composites

Author:

Canel Timur1ORCID,Kayahan Ersin2,Fidan Sinan3,Sinmazcelik Tamer4

Affiliation:

1. Faculty of Arts and Science, Department of Physics, Kocaeli University, Turkey

2. Laser Technologies Research and Application Center (LATARUM), Kocaeli University, Turkey

3. Faculty of Aeronautics and Astronautics, Kocaeli University, Kocaeli University, Turkey

4. Department of Mechanical Engineering, Kocaeli University, Turkey

Abstract

It was mainly aimed at the study to make the optimization of laser parameters to obtain dimples with the desired shape and size. Carbon Fiber EPOXY composite (CF-EPOXY) surfaces were ablated by Nd:YAG laser which has a 1064 nm wavelength. Some important laser process parameters such as focus position, pulse energy, duration and number were optimized to achieve maximum aspect ratio, circular shape and minimum thermal defect. In addition, it has been determined that which laser parameters are more effective to obtain the desired quality surface. These different shapes and geometry of dimples could be used to improve some properties such as wettability, friction, etc. The pulse energy with an effective rate of 55.97 % is the most effective parameter to achieve the larger aspect ratio. The focus position is the most effective parameter with the rates of 66.18 % and 47.94 % to obtain both perfect circularity and minimum thermal defects respectively. Confirmation experiments were performed and the highest aspect ratio was found as 1.14, the best circular dimple and the minimum thermal effects outside the spot area were found with the rates of 1.021. These are the optimum results of 9 experiment sets in this study for each output. The results were supported by confirmation experiments and regression analysis. It can be concluded that the Taguchi method is reliable and saves time and materials.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3