Dielectric and mechanical properties of nickel silica core-shell reinforced PMMA nanocomposites

Author:

Abulyazied DE12ORCID,Abomostafa HM3

Affiliation:

1. Department of Petrochemical, Egyptian Petroleum Research Institute (EPRI), Egypt

2. Department of Physics, Faculty of Science, University of Tabuk, Saudi Arabia

3. Faculty of Science, Physics Department, Menoufia University, Egypt

Abstract

This paper study the dielectric and mechanical properties of poly (methyl methacrylate)-nickel silica core-shell nanocomposite. Ni@SiO2/PMMA nanocomposite films were prepared by incorporating Ni@SiO2 nanoparticles in PMMA matrix using the solution casting method. The morphology of the prepared nanoparticles was examined through a High-resolution transition electron microscope (HRTEM), which revealed the formation of SiO2 shell at Ni magnetic nanoparticles. The dielectric properties of the nanocomposite films were studied as a function of temperature and frequency in the ranges of 30–180°C and 100 Hz – 5 MHz respectively. The incorporation of the nano Ni@SiO2 to PMMA has a positive effect on the dielectric constant ε′ of the nanocomposites, as well as, ε′ improved with increasing temperature. The real electric modulus (M′) of composites confirms the occurrence of dispersion in all composites at all temperatures. While dielectric loss tangent ε ″ and the loss part of electric modulus spectra (M) exhibit relaxation peaks which characterize possible relaxation of interfacial polarization in the interface between Ni@SiO2 core-shell and PMMA matrix, these peaks have shifted towards higher frequency with temperature. The relaxation and activation energies, Ec and Ea values decreased from 0.49 to 0.40 eV and from 0.87 to 0.70 eV respectively as Ni@SiO2 content increased. The ac conductivity of the nanocomposite films has deeply increased with increasing temperature and Ni@SiO2 content. The longitudinal modulus (L), shear modulus (G), Young's modulus (E), and bulk modulus (B) of films were studied and they increased as the filler increased from 0 to 15 wt.%.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3