Strength of single-lap-joint assemblies of continuous unidirectional carbon fibre-reinforced thermoplastic matrix tapes under tensile loading

Author:

Machado Martín1,Fischlschweiger Michael2,Major Zoltan1

Affiliation:

1. Institute of Polymer Product Engineering, Johannes Kepler University, Austria

2. Center for Lightweight Composite Technologies, ENGEL AUSTRIA GmbH, Austria

Abstract

Unidirectional tape-placement technologies appeared as a promising alternative due to their potential in large-scale component production. While the optimization strategies used to define the tape lay-out can be of different nature, the utilization of tape-to-tape joints is inevitable. Whereas several studies have focussed their efforts on the process and design stages, no study has yet addressed the influence of the manufacturing process on the mechanics of unidirectional tape joints. In this study, the strength of single-lap-joint assemblies of carbon fibre-reinforced thermoplastic tapes under tensile loading was analysed. The dependence of the strength on the overlap geometry and the manufacturing pressure was of main focus. Single-lap-joint assemblies with rectangular and rounded overlaps of the same overlap area were prepared employing a pre-heating stage at 250℃ and forming pressures from 3 to 100 bar. Failure of the assemblies was not observed on the overlap itself but instead on the zone near the overlap end on the adherend. Traditional determination of strength of single-lap-joint assemblies is not applicable in this case. Consequently, a typical Hashin failure criterion was used to model the failure of the assemblies. The study showed that although cohesive failure is not likely within the analysed pressure range, overlap geometry and forming-pressure affect the strength of single-lap-joint assemblies under tensile loading.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3