Heating of thick continuous glass fiber reinforced thermoplastic plates via embedded metal mesh networks

Author:

Gayton James T12ORCID,Davids William G3,Haller James C1ORCID,Duffy Jordan1,Sheltra Cody1ORCID,Lopez-Anido Roberto A13,Dagher Habib J1,Lapp Justin L2

Affiliation:

1. Advanced Structures and Composites Center, University of Maine, Orono, ME, USA

2. Department of Mechanical Engineering, University of Maine, Orono, ME, USA

3. Department of Civil and Environmental Engineering, University of Maine, Orono, ME, USA

Abstract

A method is proposed to locally heat areas of thick (>25.4 mm) continuous glass fiber reinforced thermoplastic (C-FRTP) composites with embedded wire mesh resistive heating elements. Four test specimens including 10.6 cm wide nichrome mesh heating elements embedded in C-FRTP laminates were fabricated and used for heating trials, showing that the composite can be locally heated to near the thermoplastic forming temperature over its entire thickness in less than 1 hour. The heating trials were simulated using a purpose-built finite difference model to investigate detailed temperature distributions. The simulations show that the internal resistive heating elements are capable of locally increasing the temperature of the composite with negligible effect on the adjacent material. Heating efficiency is between 73% and 77%, with temperature differences in the z-direction at peak temperatures less than 35°C. Temperature uniformity can be improved by longer heating times and more heating elements. The local heating method does not cause deconsolidation of the part. The heating method was also experimentally assessed on a more complex cross-section laminate with varying thickness and a foam core using stainless steel mesh heating elements. Results from the first heating tests were applied to the experimental assessment of the more complex laminate to reduce z-direction temperature differences. Numerical simulation of the heating of the foam core laminate showed a z-direction temperature range of 15.5°C. The results of this study show that embedded resistive heating is a cost-effective and simple method for heating a local portion of a thick fiber reinforced thermoplastic composite.

Funder

Engineer Research and Development Center

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3