Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India
Abstract
The tensile behavior of fiber metal laminates consisting of layers of aluminum 2024-T3 alloy and glass fiber reinforced composites under high strain rate loading is investigated. Fiber metal laminates having four different layups, but all having the same total metal layer thickness, were fabricated using a combined hand lay-up cum vacuum bagging method. The fiber metal laminate specimens were loaded in high strain rate tension using a split Hopkinson tensile bar. The rate-dependent behavior of the glass fiber composite was also obtained as baseline data. The strain on the gage area of the specimen was measured directly using high-speed digital image correlation. Another high-speed camera was used to capture the sequence of damage by viewing the specimen edgewise. The results indicated that the strength of the fiber metal laminates increased at high strain rates primarily due to the rate-dependent behavior of the composite used. The response was also influenced by the distribution of the metallic layers in the fiber metal laminates. The failure in the case where the individual composite layers were separated by metallic layers was more progressive in nature.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献