Influence of cenospheric fillers on the thermal properties, ceramisation and flammability of nitrile rubber composites

Author:

Rybiński Przemysław1ORCID,Syrek Bartłomiej1,Bradło Dariusz2,Żukowski Witold2,Anyszka Rafał3,Imiela Mateusz3

Affiliation:

1. The Jan Kochanowski University, Management of Environment Protection and Modeling, Poland

2. Faculty of Chemical Engineering and Technology, Cracow University of Technology, Poland

3. Institute of Polymer and Dye Technology, Technical University of Łódź, Poland

Abstract

In this paper, the influence of cenospheric fillers of different particle sizes on the thermal properties and flammability of butadiene-acrylonitrile rubber is presented. A part of fly ash cenospheres was coated with an iron and iron (III) oxide layer. A series of examinations were conducted, these took the forms of: thermal analysis; oxygen index analysis; cone calorimeter measurements; SEM; AFM. These examinations enabled the explanation of iron-based combustion inhibition processes in terms of catalysis of char formation and elastomer cross-linking. Cenospheres itself without additional coatings or fillers provide high surface for polymer chain adsorption, and hence degradation of composite is reduced. Additionally, the results of the investigation on the effectiveness of cenospheric filler usage for ceramisation are discussed. It is proven that the durable ceramic structure is formed owing to the addition of cenospheres in the presence of an inorganic flux. Thus, replacement of silica by lightweight cenospheres is possible. Cenospheres with an iron coating and in the presence of wollastonite and an inorganic flux allow obtaining the NBR composites which are non-flammable in the air atmosphere; furthermore, the ceramic layer formed during the composite combustion has advantageous mechanical properties.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3