Application of Taguchi method in the optimization of geometric parameters for double pin joint configurations made from glass–epoxy nanoclay laminates

Author:

Singh Manjeet1,Saini J S1,Bhunia H2,Singh Paramdeep1

Affiliation:

1. Mechanical Engineering Department, Thapar University, Patiala, Punjab, India

2. Chemical Engineering Department, Thapar University, Patiala, Punjab, India

Abstract

In the present work, Taguchi method was used for the optimization of geometric parameters for double pin joint configurations. The orthogonal array, the signal-to-noise ratio, and analysis of variance were employed to study the effect of geometric parameters on the bearing strength of the joints. Geometric parameters, i.e. the distance from the free edge of the specimen to the diameter of the first hole (E/D) ratio, width of the specimen to the diameter of the hole (W/D) ratio, the distance between the two holes to the diameter of the hole (P/D) ratio and side width to the diameter of the hole (K/D) ratio were investigated for the serial and parallel hole configurations. The results demonstrate that the E/D ratio is the most significant parameter to increase the bearing strength in both serial and parallel pin joint configurations. Its percentage contribution is about 84.5% and 64.23% in serial and parallel pin joint configurations, respectively. Characteristic curve with Tsai–Wu failure criterion was used for the prediction of the bearing strength in the joints numerically. A good agreement was obtained between experimental results and numerical predictions.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3