Radiation and lead nanoparticles effects on the mechanical properties of unidirectional carbon fiber/epoxy composites

Author:

Abdelal Nisrin1ORCID,Abu Saleem Rabie2,Alsabbagh Ahmad2,Al-Jarrah Maram2,Al- Jawarneh Fatima2

Affiliation:

1. Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, Jordan

2. Department of Nuclear Engineering, Jordan University of Science and Technology, Irbid, Jordan

Abstract

This study investigates the effects of two different parameters on the mechanical properties of carbon fiber-epoxy composites. The two addressed parameters are the composite’s exposure to gamma radiation with different doses, and the incorporation of lead nanoparticles with different weight percentages in the epoxy matrix. Unidirectional carbon fiber-epoxy composites are manufactured using the hand layup vacuum bagging process, and they are characterized by tensile tests and scanning electron microscope. The first part of the study entails fabricating composite laminates with different weight percentages of lead nanoparticles, namely, 0wt%, 1wt%, 2wt%, 3wt%, 4wt% and 5wt%. The results show that composites incorporating lead nanoparticles up to 3wt% exhibit monotonically improved tensile strength and Young’s modulus without compromising their ductility. Whereas, degradation of these mechanical properties is observed with increasing lead content beyond 3wt%. For the second part of the study, composite specimens are exposed to different doses of gamma radiation, namely, 0, 25, 50, 75 and 100 kGy. It is observed that the tensile strength, the modulus of toughness and the ductility of the composites improve for radiation exposures up to 25 kGy. However, radiation exposures higher than 25 kGy lead to deterioration in the tensile strength, modulus of toughness and Young’s modulus with negligible effect on the ductility.

Funder

King Abdullah II Fund for Development

Jordan University of Science and Technology

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3