Manufacturing of Al–Al2O3–Mg multilayered nanocomposites by accumulative roll bonding process and study of its microstructure, tensile, and bending properties

Author:

Abbasi M1,Sajjadi SA1

Affiliation:

1. Department of Materials Science and Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Iran

Abstract

Accumulative roll bonding is used for producing multilayered composites, with exciting mechanical properties, via the creation of bonding between dissimilar metallic layers. In this study for the first time, Al–Mg multilayered composites reinforced with nano-Al2O3 particles were produced by the accumulative roll bonding process at different temperatures. However, there was a problem regarding the adhesion of the nanoceramic particles with each other and with the sheet metals. To avoid these disadvantageous effects of the Al2O3 particle addition and to create better adhesion at interfaces, Al and different percentages of Al2O3 powders were ball milled and Al/Al2O3 composite powders were produced. Afterward, the composite powder was added between Al and Mg sheets and they were rolled to 50% reduction in thickness in each cycle. The process was continued up to four cycles at different temperatures. The microstructural evaluation and mechanical properties of aluminum/nanoalumina/magnesium composites showed that 300℃ is suitable temperature for accumulative roll bonding of Al and Mg sheets with nano-Al2O3 particles. Accumulative roll bonded composites with Al/5 wt% Al2O3 composite powder showed higher tensile strength while the maximum bending strength was related to the composites containing Al/10 wt% Al2O3. Fracture surfaces of the nanocomposites revealed a brittle fracture at higher cycles.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Corrosion behavior and microstructure of Al–10Zn alloy with nano CuO addition;Scientific Reports;2023-08-08

2. Effect of Temperature and Strain on the Microstructure and Mechanical Properties of AA6061/AZ31 Laminated Composite Produced by Hot Forge Bonding;Transactions of the Indian Institute of Metals;2021-10-08

3. Study the Effects of Titanium Dioxide nano particles reinforcement on the mechanical properties of Aluminum Alloys composite;IOP Conference Series: Materials Science and Engineering;2021-06-01

4. An Insight Into Metal Matrix Composites With Nano Size Reinforcement;Encyclopedia of Materials: Composites;2021

5. Wear-Resistant Metals and Composites;Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3