Effect of zirconia and aluminium titanate on the mechanical properties of transformation-induced plasticity-matrix composite materials

Author:

Weigelt C1,Aneziris CG1,Ehinger D2,Eckner R2,Krüger L2,Ullrich C3,Rafaja D3

Affiliation:

1. Institute of Ceramic, Glass and Construction Materials, Technische Universität Bergakademie Freiberg, Germany

2. Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Germany

3. Institute of Materials Science, Technische Universität Bergakademie Freiberg, Germany

Abstract

Metal-matrix composite materials composed of an austenitic stainless steel with different ceramic particle reinforcements were investigated in this study. The test specimens were prepared via a powder metallurgical processing route with extrusion at room temperature. As reinforcement phase, either magnesia partially stabilized zirconia or aluminium titanate with a volume content of 5% or 10% was used. The mechanical properties were determined by quasi-static compressive and tensile loading tests at ambient temperature. The microstructure characteristics and failure mechanisms during deformation contributing to significant changes in strength and ductility were characterized by scanning electron microscopy including energy dispersive X-ray spectroscopy and electron back-scatter diffraction, and by X-ray diffraction. The composite materials showed higher stress over a wide range of strain. Essentially, the deformation-induced formation of α′-martensite in the steel matrices is responsible for the pronounced strain hardening. At higher degrees of deformation, the material behavior of the composites was controlled by arising damage evolution initiated by particle/matrix interface debonding and particle fracture. The particle reinforcement effects of zirconia and aluminium titanate were mainly controlled by their influences on martensitic phase transformations and the metal/ceramic interfacial reactions, respectively. Thereby, the intergranular bonding strength and the toughness of the steel/ceramic interfaces were apparently higher in composite variants with aluminium titanate than in composites with magnesia partially stabilized zirconia particles.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3