Optimization of Fiber Coatings to Minimize Stress Concentrations in Composite Materials

Author:

Carman Gregory P.1,Averill Ronald C.1,Reifsnider Kenneth L.1,Reddy J.N.1

Affiliation:

1. Department of Engineering Science and Mechanics Virginia Polytechnic Institute and State University Blacksburg, VA 24061-0219

Abstract

In this article we utilize a concentric cylinder model to analyze the stress state in a continuously reinforced coated fiber composite subjected to transverse loading. We incorporate this analysis into a methodical approach to determine an optimal inter phase coating for the fibers to maximize the composite's transverse strain to failure. The present study focuses on the effect of interphase Young's modulus on the stress state in the matrix material of a composite subjected to constant strain (displacement) boundary con ditions. We demonstrate, by analytically varying the coating modulus, that an optimum in terphase property exists which minimizes the maximum principal stress and the strain en ergy density in the composite material. The minimization of these quantities clearly indicates that failure initiation in a composite with an optimal fiber coating will occur at a significantly larger strain level. Therefore, we postulate (based on the current analysis) that the transverse strain to failure of a composite system can be increased with appropriate fiber coatings. Results and design curves are presented for an AS-4/Epon 828 composite system which suggest that for large fiber volume fractions (i.e., 60%) the optimum coating is an elastomeric material. The data presented on this composite suggest that the strain to failure can be increased as much as 6 times by coating the structural fibers with an optimal coating. A comparison between constant stress boundary conditions (i.e., optimizing strength) and constant strain boundary conditions (i.e., optimizing strain to failure) are also presented.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3